Robustness analysis of biochemical network models.

نویسندگان

  • J Kim
  • D G Bates
  • I Postlethwaite
  • L Ma
  • P A Iglesias
چکیده

Biological systems that have been experimentally verified to be robust to significant changes in their environments require mathematical models that are themselves robust. In this context, a necessary condition for model robustness is that the model dynamics should not be sensitive to small variations in the model's parameters. Robustness analysis problems of this type have been extensively studied in the field of robust control theory and have been found to be very difficult to solve in general. The authors describe how some tools from robust control theory and nonlinear optimisation can be used to analyse the robustness of a recently proposed model of the molecular network underlying adenosine 3',5'-cyclic monophosphate (cAMP) oscillations observed in fields of chemotactic Dictyostelium cells. The network model, which consists of a system of seven coupled nonlinear differential equations, accurately reproduces the spontaneous oscillations in cAMP observed during the early development of D. discoideum. The analysis by the authors reveals, however, that very small variations in the model parameters can effectively destroy the required oscillatory dynamics. A biological interpretation of the analysis results is that correct functioning of a particular positive feedback loop in the proposed model is crucial to maintaining the required oscillatory dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural robustness of biochemical network models-with application to the oscillatory metabolism of activated neutrophils.

Sensitivity of biochemical network models to uncertainties in the model structure, with a focus on autonomously oscillating systems, is addressed. Structural robustness, as defined here, concerns the sensitivity of the model predictions with respect to changes in the specific interactions between the network components and encompass, for instance, uncertain kinetic models, neglected intermediat...

متن کامل

Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications

Background: A genome-scale metabolic network model (GEM) is a mathematical representation of an organism’s metabolism. Today, GEMs are popular tools for computationally simulating the biotechnological processes and for predicting biochemical properties of (engineered) strains.Objectives: In the present study, we have evaluated the predictive power of two ...

متن کامل

Robustification as a Tool in Modeling Biochemical Reaction Networks

Biological functions have evolved to become robust against a multitude of perturbations such as gene mutations, intracellular noise and changes in the physical and chemical environment. This robustness should be reflected in models of the underlying biochemical networks, and robustness analysis is frequently employed in validating models of intracellular biochemical reaction networks. However, ...

متن کامل

BMC Systems Biology

Background: Quantifying the robustness of biochemical models is important both for determining the validity of a natural system model and for designing reliable and robust synthetic biochemical networks. Several tools have been proposed in the literature. Unfortunately, multiparameter robustness analysis suffers from computational limitations. Results: A novel method for quantifying the robustn...

متن کامل

Network Structure and Robustness of Intracellular Oscillators

Sustained oscillations play a key role in many intracellular functions, such as circadian time keeping, cell cycle control and calcium signalling. The oscillations are in all cases driven by feedback interactions taking place in biochemical reaction networks. While a single feedback loop in principle is sufficient to generate such oscillations, experimental evidence reveal that more complex net...

متن کامل

Supporting Online Material for: Stochastic analysis of biochemical reaction networks with absolute concentration robustness

2 Background, terminology, and notation 2 2.1 Chemical reaction networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Deterministic chemical reaction systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.1 Absolute concentration robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 Reformulation of equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Systems biology

دوره 153 3  شماره 

صفحات  -

تاریخ انتشار 2006